Curvature, diameter, and quotient manifolds
نویسندگان
چکیده
منابع مشابه
m at h . D G ] 1 3 Se p 20 02 Curvature , diameter , and quotient manifolds
This paper gives improved counterexamples to a question by Grove ([11], 5.7). The question was whether for each positive integer n and real number D, the simply connected closed Riemannian n-manifolds M with sectional curvature ≥ −1 and diameter ≤ D fall into only finitely many rational homotopy types. This was suggested by Gromov's theorem which bounds the Betti numbers of M in terms of n and ...
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملCurvature, Diameter and Betti Umbers
Let V denote a compact (without boundary) connected Riemannian manifold of dimension n. We denote by K the sectional curvature of V and we set inf K = ird~ K(-r) where 9 runs over all tangent 2-planes in V. One calls V a manifold of non-negative curvature ff inf K>~0. This condition has the following geometric meaning. A n n-dimensional Riemannian manifold has non-negative curvature iff for eac...
متن کاملDiameter and Curvature: Intriguing Analogies
We highlight intriguing analogies between the diameter of a polytope and the largest possible total curvature of the associated central path. We prove continuous analogues of the results of Holt and Klee, and Klee and Walkup: We construct a family of polytopes which attain the conjectured order of the largest curvature, and prove that the special case where the number of inequalities is twice t...
متن کاملStrictly Kähler-Berwald manifolds with constant holomorphic sectional curvature
In this paper, the authors prove that a strictly Kähler-Berwald manifold with nonzero constant holomorphic sectional curvature must be a Kähler manifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 2003
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.2003.v10.n2.a7